
Advanced Confirmatory Factor Analysis with R
James H. Steiger
Psychology 312

Spring 2013

In a previous module, we analyzed an artificial “Athletics Data” set to illustrate several

approaches to “confirmatory” factor analysis. One was truly (and rigidly) confirmatory:

one starts with a particular strong model, tests it with maximum likelihood, and either

rejects or accepts the model based on whether or badness-of-fit is reasonable.

When the number of variables is large, setting up a confirmatory factor analysis in R

can be time-consuming. Recently, I developed a library of functions specifically designed

to take most of the “busywork” out of both exploratory and confirmatory factor

analysis. In this module, we see how to perform a confirmatory factor analysis with the

Advanced Factor Functions library.

1 . “Pure” Confirmatory Factor Analysis

In “pure” confirmatory factor analysis, the investigor performs the following:

1. A factor loading matrix with fixed values and free parameters is specified. In

traditional versions of “pure” CFA, the researcher designates many of the

loadings to have fixed values of zero, and the remaining loadings to be free

parameters to be estimated. Likewise, factor intercorrelations may be estimated

or fixed at zero.

2. The specified confirmatory factor model is tested using standard structural

equation modeling software.

3. If fit of the model is not acceptable, the model is rejected.

Consider the Athletics Data example we examined in conjunction with EFA. In our

introductory handout, we tested a “pure confirmatory model” in which there were 3

uncorrelated factors called Endurance, Strength, and Hand-Eye Coordination, and that

each factor has non-zero loadings on only 3 variables. This specifies that the factor

pattern F is of the form

1

2

3

4

5

6

7

8

9

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0













 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
  

F

If you were starting from scratch and specifying this model in the R program sem, it

would take a lot of typing to create a model input file like the one below.

Factor 1 – Endurance
Endurance -> X.1500M, theta01, NA
Endurance -> X.2KROW, theta02, NA
Endurance -> X.12MINTR,theta03, NA
Factor 2 – Strength
Strength -> BENCH, theta04, NA
Strength -> CURL, theta05, NA
Strength -> MAXPUSHU, theta06, NA
Factor 3 – Hand-Eye Coordination
Hand-Eye -> PINBALL, theta07, NA
Hand-Eye -> BILLIARD, theta08, NA
Hand-Eye -> GOLF, theta09, NA
Unique Variances
X.1500M <-> X.1500M, theta10, NA
X.2KROW <-> X.2KROW, theta11, NA
X.12MINTR <-> X.12MINTR, theta12, NA
BENCH <-> BENCH, theta13, NA
CURL <-> CURL, theta14, NA
MAXPUSHU <-> MAXPUSHU, theta15, NA
PINBALL <-> PINBALL, theta16, NA
BILLIARD <-> BILLIARD, theta17, NA
GOLF <-> GOLF, theta18, NA
Factor Variances fixed at 1
Endurance <-> Endurance, NA, 1
Strength <-> Strength, NA, 1
Hand-Eye <-> Hand-Eye, NA, 1

The sem module does offer a streamlined command, cfa, to specify a confirmatory

factor model. But even this command requires typing or pasting manifest variable

names.

The Advanced Factor Functions library eliminates almost all typing, whether you want

a cfa specification or a full sem specification of your model.

Assume for now that you want to create the simple model specified above, and fit it to

the correlation matrix for the AthleticsData file.

After loading the Hmisc library, loading the AthleticsData file and attaching it with the

following 3 lines, we are ready to go.

> library(Hmisc)
> AthleticsData <- spss.get(“AthleticsData.sav”)
> attach(AthleticsData)

We begin by computing a correlation matrix for analysis.

> AD.R <- cor(AthleticsData)

After loading the sem package, we then load in the AdvancedFactorFunctions

library.

> library(sem)
> source(“AdvancedFactorFunctions.txt”)

To specify and test the pure confirmatory factor model, use the QuickCFA function.

You call this with a correlation matrix and a requested number of factors. You can

optionally enter a list of factor names, but it is actually easier to simply type them into

the pattern editor.

The QuickCFA function performs two steps:

1. A quick factor pattern editor is opened. The user specifies the factor pattern with

1’s indicating free parameters, and 0’s indicating fixed values of zero. Then this

pattern is converted into a sem model specification and saved to disk.

2. The model and data are analyzed automatically, using the sem command.

Results are returned as a sem object.

Each of these individual steps can be processed individually using more “fine-grained”

service functions.

> pureCFA.fit <- QuickCFA(AD.R,3,1000,”pureCFA”,c(“Hand-Eye”,”Endurance”,”Strength”))

A window will open allowing you to edit the pattern.

Change the zeros into 1’s to match the hypothesized pattern. In this case, you should

have

Close the window, and the model will be analyzed, and the results of the analysis

returned. Requesting a summary of the fit produces the following:
> summary(pureCFA.fit)

Model Chisquare = 526.3 Df = 27 Pr(>Chisq) = 5.81e-94
 AIC = 562.3
 BIC = 339.8

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -7.530 0.000 0.823 1.710 2.880 14.000

 R-square for Endogenous Variables
 PINBALL BILLIARD GOLF X.1500M X.2KROW X.12MINTR BENCH CURL MAXPUSHU
 0.3541 0.5765 0.5533 0.5051 0.2855 0.5639 0.6097 0.5207 0.2345

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
lam[PINBALL:Hand-Eye] 0.5950 0.03355 17.736 2.204e-70 PINBALL - HandEye
lam[BILLIARD:Hand-Eye] 0.7593 0.03470 21.885 3.644e-106 BILLIARD - HandEye
lam[GOLF:Hand-Eye] 0.7438 0.03458 21.512 1.196e-102 GOLF - HandEye
lam[X.1500M:Endurance] 0.7107 0.03740 19.005 1.550e-80 X.1500M - Endurance
lam[X.2KROW:Endurance] 0.5344 0.03501 15.263 1.349e-52 X.2KROW - Endurance
lam[X.12MINTR:Endurance] 0.7509 0.03801 19.757 7.017e-87 X.12MINTR - Endurance
lam[BENCH:Strength] 0.7808 0.03954 19.750 8.018e-87 BENCH - Strength
lam[CURL:Strength] 0.7216 0.03848 18.750 1.932e-78 CURL - Strength
lam[MAXPUSHU:Strength] 0.4843 0.03489 13.881 8.261e-44 MAXPUSHU - Strength
V[PINBALL] 0.6459 0.03553 18.178 7.719e-74 PINBALL > PINBALL
V[BILLIARD] 0.4235 0.03863 10.962 5.806e-28 BILLIARD > BILLIARD
V[GOLF] 0.4467 0.03799 11.758 6.395e-32 GOLF > GOLF
V[X.1500M] 0.4949 0.04247 11.651 2.257e-31 X.1500M > X.1500M
V[X.2KROW] 0.7145 0.03797 18.816 5.556e-79 X.2KROW > X.2KROW
V[X.12MINTR] 0.4361 0.04493 9.707 2.819e-22 X.12MINTR > X.12MINTR
V[BENCH] 0.3903 0.04919 7.935 2.111e-15 BENCH > BENCH
V[CURL] 0.4793 0.04475 10.712 8.916e-27 CURL > CURL
V[MAXPUSHU] 0.7655 0.03855 19.857 9.556e-88 MAXPUSHU > MAXPUSHU

 Iterations = 22

Notice how the sem program gave the parameters long, involved names to try to

describe their function. The QuickCFA function allows you to specify either correlated

or orthogonal (uncorrelated) factors. In this case, we chose orthogonal factors, which is

the default option. You may find the factor pattern itself easier to read and interpret in

matrix form. You can take a quick look at it with the GetPattern function. This

function extracts the factor pattern in matrix from from the sem fit object:

> GetPattern(pureCFA.fit)
$F
 HandEye Endurance Strength
PINBALL 0.5950341 0.0000000 0.0000000
BILLIARD 0.7593054 0.0000000 0.0000000
GOLF 0.7438495 0.0000000 0.0000000
X.1500M 0.0000000 0.7107084 0.0000000
X.2KROW 0.0000000 0.5343523 0.0000000
X.12MINTR 0.0000000 0.7509451 0.0000000
BENCH 0.0000000 0.0000000 0.7808211

CURL 0.0000000 0.0000000 0.7215662
MAXPUSHU 0.0000000 0.0000000 0.4842856

$Phi
 HandEye Endurance Strength
HandEye 1 0 0
Endurance 0 1 0
Strength 0 0 1

This display can be cleaned up using the GetPrettyPattern function

> GetPrettyPattern(pureCFA.fit)

 HandEye Endurance Strength
PINBALL 0.595
BILLIARD 0.759
GOLF 0.744
X.1500M 0.711
X.2KROW 0.534
X.12MINTR 0.751
BENCH 0.781
CURL 0.722
MAXPUSHU 0.484

 HandEye Endurance Strength
SS loadings 1.484 1.355 1.365
Proportion Var 0.165 0.151 0.152
Cumulative Var 0.165 0.315 0.467

Factor Intercorrelations
 HandEye Endurance Strength
HandEye 1 0 0
Endurance 0 1 0
Strength 0 0 1

The “pure” confirmatory factor model was rejected by the standard chi-square test. One

can calculate an RMSEA confidence interval to guard against a situation in which

power is high to reject even small departures from perfect fit.
> RMSEA(pureCFA.fit)
$Lower.Limit
[1] 0.1260335

$Point.Estimate
[1] 0.1360501

$Upper.Limit
[1] 0.1463237

$Confidence.Level
[1] 0.9

By most common criteria, this model doesn’t fit well enough to be considered adequate.

In the face of such poor fit, many researchers resort to “modification indices” or other

devices in order to update the model and obtain hints about where it might be

inadequate. Modification indices predict, using derivatives, how much the chi-square fit

statistic will improve if a particular path is added.

The sem module in R prints out modification indices. Some of them are illegal in a

confirmatory model, and some involve freeing up error covariances in the model. The

latter leads to correlated errors, which violates Spearman’s original intent that factors

explain the correlations among the variables (in the partial correlation sense).

A number of writers have warned about misuse of modification indices. There are a

number of devices one might use to guard against improper reliance on these indices.

I’ve created a function, CheckMod, to pick out the largest modification index that is

“legal.” Unless you explicitly specify the option loadings.only = FALSE, you will

be shown only modification indices corresponding to currently zero loadings.
> CheckMod(pureCFA.fit)
$NewPath
[1] "Endurance->MAXPUSHU,AddedTheta19, NA"

$ModIndex
[1] 186.7415

To update a sem fit object with the current modification index, use the UseMod

function.
> fit2 <- UseMod(pureCFA.fit)

A quick check reveals that the fit is not yet what we would like:
> RMSEA(fit2)
$Lower.Limit
[1] 0.09436259

$Point.Estimate
[1] 0.1046251

$Upper.Limit
[1] 0.1152201

$Confidence.Level
[1] 0.9

We check the next modification index. It shows a potential change of 24 in the chi-

square, so we modify the model again.

> CheckMod(fit2)
$NewPath
[1] "Strength->X.2KROW,AddedTheta20, NA"

$ModIndex
[1] 168.0183

> fit3 <- UseMod(fit2)
> RMSEA(fit3)
$Lower.Limit
[1] 0.05259059

$Point.Estimate
[1] 0.06337986

$Upper.Limit
[1] 0.07463124

$Confidence.Level
[1] 0.9> fit3 <- UseMod(fit2)

Now we have better fit.

> GetPrettyPattern(fit3)

 HandEye Endurance Strength
PINBALL 0.595
BILLIARD 0.759
GOLF 0.744
X.1500M 0.772
X.2KROW 0.609 0.423
X.12MINTR 0.692
BENCH 0.812
CURL 0.694
MAXPUSHU 0.459 0.564

 HandEye Endurance Strength
SS loadings 1.484 1.657 1.639
Proportion Var 0.165 0.184 0.182
Cumulative Var 0.165 0.349 0.531

Factor Intercorrelations

 HandEye Endurance Strength
HandEye 1 0 0
Endurance 0 1 0
Strength 0 0 1

2 . Confirmatory Factor Analysis from an Exploratory Pattern

In this approach, one uses confirmatory factor modeling to “clean up” a pattern

obtained by exploratory methods. The steps are

1. An exploratory factor analysis is performed with the standard steps.

2. After the number of factors is selected, the researcher chooses the best

exploratory rotation, and uses that as the basis for constructing a confirmatory

factor model. Essentially, any loading below a certain cutoff is fixed at 0, and all

other loadings are left as free parameters.

These steps can be performed in one step using the QuickEFAtoCFA function.

> fit <- QuickEFAtoCFA(AD.R,3,1000)

> GetPrettyPattern(fit)
 Factor1 Factor2 Factor3
X.1500M 0.794
X.2KROW 0.645 0.474
X.12MINTR 0.674
BENCH 0.839
CURL 0.677
MAXPUSHU 0.506 0.603
PINBALL 0.602
BILLIARD 0.753
GOLF 0.745

 Factor1 Factor2 Factor3
SS loadings 1.758 1.751 1.484
Proportion Var 0.195 0.195 0.165
Cumulative Var 0.195 0.390 0.555

Factor Intercorrelations

 Factor1 Factor2 Factor3
Factor1 1.000 -0.273 0.015
Factor2 -0.273 1.000 0.207
Factor3 0.015 0.207 1.000

Notice that the default is a correlated factor model. By using the cov.matrix=FALSE

option, one may generate an orthogonal solution.
> fit <- QuickEFAtoCFA(AD.R,3,1000, cov.matrix=FALSE)
> GetPrettyPattern(fit)
 Factor1 Factor2 Factor3
X.1500M 0.772
X.2KROW 0.609 0.423
X.12MINTR 0.692
BENCH 0.812
CURL 0.694
MAXPUSHU 0.459 0.564
PINBALL 0.595
BILLIARD 0.759
GOLF 0.744

 Factor1 Factor2 Factor3
SS loadings 1.657 1.639 1.484
Proportion Var 0.184 0.182 0.165
Cumulative Var 0.184 0.366 0.531

Factor Intercorrelations

 Factor1 Factor2 Factor3
Factor1 1 0 0
Factor2 0 1 0
Factor3 0 0 1

3. Automating the “Confirm and Update” Approach

In the introductory handout, Confirmatory Factor Analysis with R¸ we demonstrated

how modification indices can be used to update a confirmatory factor model that does

not fit well. In this section, we demonstrate how the process can be speeded up by using

the results of a rotated exploratory factor analysis as the basis of a confirmatory model.

We emphasize that this technique should be used with caution. It has some real

advantages, one of which is that the parameter estimates from the exploratory solution

are automatically used as starting values in the confirmatory analysis.

Let’s take another look at the orthogonal solution generated in the previous section.
> fit <- QuickEFAtoCFA(AD.R,3,1000, cov.matrix=FALSE)
> CheckMod(fit)
$NewPath
[1] "Factor2->X.1500M,AddedTheta21, NA"

$ModIndex
[1] 41.91084

> fit <- UseMod(fit)
GetPrettyPattern(fit)

With one pass from modIndices, we have achieved the same model as in the

introductory handout, but in a fraction of the time. Of course, with a simple R loop,

you could automate the process.

4. The “Exploratory-Confirmatory” Approach Revisited

An alternative approach, which begins with a purely exploratory factor analysis, was

described by Karl Jöreskog in his 1978 Presidential Address to the Psychometric

Society.

As described in the introductory hand out on confirmatory factor analysis, Jöreskog’s

approach is as follows:

• Perform an exploratory factor analysis, and decide on the number of factors, m.

In many textbook examples, the decision is relatively clear cut. Be forewarned —

in practice the decision may be quite difficult.

• Fit an m-factor model, and rotate to simple structure using varimax or promax.

(In the original article, Jöreskog said to use promax.)

• For each column of the factor pattern, find the largest loading, then constrain all

the other loadings in that row to be zero, and fit the resulting model as a

confirmatory factor model. This confirmatory model will have exactly the same

discrepancy function and 2 value as the exploratory factor analysis that

preceded it.

• Examine the factor pattern, and test all factor loadings. Delete “non-significant”

loadings from the model. After checking the fit, the user can decide whether to

terminate the process, or look for more loadings to delete.

In our introductory handout, we explained how the various steps are performed, and

illustrated them using the AthleticsData. We demonstrated that the first 3 steps use

confirmatory factor analysis to find a specific rotational position, but that this

rotational position can actually be calculated directly. Once this position has been

attained in a confirmatory factor analysis, the resulting pattern is “toned up” by

eliminating non-significant loadings.

The function QuickJoreskog does all this automatically.

> R <- as.matrix(Harman74.cor$cov)
> fit <- QuickJoreskog(R,4,145)

This analysis could take several hours to complete using the sem package. The many

steps requiring careful scanning of output result in quite a few errors. Compare the

pattern on the next page to the final one in Jöreskog (1978). His has a chi-square of

301 with 231 degrees of freedom, while the model derived automatically has values of

294 and 230. By using the service function FAtoREF, you can generate the

intermediate “reference solution” and see that he made a couple of errors deleting and

including paths. This is very easy to do when performing these operations by hand.

This solution can be “improved” by using CheckMod and UseMod and adding a few

paths.

> GetPrettyPattern(fit)
 Factor1 Factor2 Factor3 Factor4
GeneralInformation 0.746 0.146
PargraphComprehension 0.829
SentenceCompletion 0.889 0.141 -0.196
WordClassification 0.511 0.213 0.148
WordMeaning 0.860
VisualPerception 0.735
PaperFormBoard 0.546
Flags 0.587
SeriesCompletion 0.265 0.540
Addition 0.848
CountingDots -0.211 0.327 0.671
WordRecognition 0.549
NumberRecognition 0.531
ObjectNumber 0.642
Cubes 0.467
Code 0.423 0.393
StraightCurvedCapitals 0.448 0.428
FigureRecognition 0.322 0.386
NumberFigure 0.184 0.499
FigureWord 0.490
Deduction 0.321 0.413
NumericalPuzzles 0.460 0.361
ProblemReasoning 0.319 0.399
ArithmeticProblems 0.371 0.493

 Factor1 Factor2 Factor3 Factor4
SS loadings 3.493 2.725 1.970 1.828
Proportion Var 0.146 0.114 0.082 0.076
Cumulative Var 0.146 0.259 0.341 0.417

Factor Intercorrelations

 Factor1 Factor2 Factor3 Factor4
Factor1 1.000 0.530 0.281 0.509
Factor2 0.530 1.000 0.247 0.523
Factor3 0.281 0.247 1.000 0.445
Factor4 0.509 0.523 0.445 1.000

	Advanced Confirmatory Factor Analysis with R
	James H. Steiger
	1 . “Pure” Confirmatory Factor Analysis
	2 . Confirmatory Factor Analysis from an Exploratory Pattern

	3. Automating the “Confirm and Update” Approach
	4. The “Exploratory-Confirmatory” Approach Revisited

