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In a previous module, we analyzed an artificial “Athletics Data” set to illustrate several 

approaches to “confirmatory” factor analysis. One was truly (and rigidly) confirmatory: 

one starts with a particular strong model, tests it with maximum likelihood, and either 

rejects or accepts the model based on whether or badness-of-fit is reasonable. 

 

When the number of variables is large, setting up a confirmatory factor analysis in R 

can be time-consuming. Recently, I developed a library of functions specifically designed 

to take most of the “busywork” out of both exploratory and confirmatory factor 

analysis. In this module, we see how to perform a confirmatory factor analysis with the 

Advanced Factor Functions library. 

1 . “Pure”  Confirmatory Factor Analysis  
 

In “pure” confirmatory factor analysis, the investigor performs the following: 

1. A factor loading matrix with fixed values and free parameters is specified. In 

traditional versions of “pure” CFA, the researcher designates many of the 

loadings to have fixed values of zero, and the remaining loadings to be free 

parameters to be estimated. Likewise, factor intercorrelations may be estimated 

or fixed at zero. 

2. The specified confirmatory factor model is tested using standard structural 

equation modeling software. 

3. If fit of the model is not acceptable, the model is rejected. 

Consider the Athletics Data example we examined in conjunction with EFA. In our 

introductory handout, we tested a “pure confirmatory model” in which there were 3 

uncorrelated factors called Endurance, Strength, and Hand-Eye Coordination, and that 



each factor has non-zero loadings on only 3 variables. This specifies that the factor 

pattern F is of the form 
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If you were starting from scratch and specifying this model in the R program sem, it 

would take a lot of typing to create a model input file like the one below. 
 
 
## Factor 1 – Endurance 
Endurance -> X.1500M,  theta01, NA 
Endurance -> X.2KROW,  theta02, NA 
Endurance -> X.12MINTR,theta03, NA 
## Factor 2 – Strength 
Strength  -> BENCH,    theta04, NA 
Strength  -> CURL,     theta05, NA 
Strength  -> MAXPUSHU, theta06, NA 
## Factor 3 – Hand-Eye Coordination 
Hand-Eye  -> PINBALL,  theta07, NA 
Hand-Eye  -> BILLIARD, theta08, NA 
Hand-Eye  -> GOLF,     theta09, NA 
## Unique Variances 
X.1500M   <->  X.1500M,  theta10, NA 
X.2KROW   <->  X.2KROW,  theta11, NA 
X.12MINTR <->  X.12MINTR, theta12, NA 
BENCH     <->  BENCH, theta13, NA 
CURL      <->  CURL, theta14, NA 
MAXPUSHU  <->  MAXPUSHU, theta15, NA 
PINBALL   <->  PINBALL, theta16, NA 
BILLIARD  <->  BILLIARD, theta17, NA 
GOLF      <->  GOLF, theta18, NA 
## Factor Variances fixed at 1 
Endurance <->  Endurance, NA, 1 
Strength  <->  Strength,  NA, 1 
Hand-Eye  <->  Hand-Eye,  NA, 1 

 

The sem module does offer a streamlined command, cfa, to specify a confirmatory 

factor model. But even this command requires typing or pasting manifest variable 

names.  



The Advanced Factor Functions library eliminates almost all typing, whether you want 

a cfa specification or a full sem specification of your model. 

 

Assume for now that you want to create the simple model specified above, and fit it to 

the correlation matrix for the AthleticsData file.  

 

After loading the Hmisc library, loading the AthleticsData file and attaching it with the 

following 3 lines, we are ready to go. 

 
> library(Hmisc) 
> AthleticsData <- spss.get(“AthleticsData.sav”) 
> attach(AthleticsData) 
 

We begin by computing a correlation matrix for analysis. 

 
> AD.R <- cor(AthleticsData) 
 

After loading the sem package, we then load in the AdvancedFactorFunctions 

library. 
 
> library(sem) 
> source(“AdvancedFactorFunctions.txt”) 
 

To specify and test the pure confirmatory factor model, use the QuickCFA function. 

You call this with a correlation matrix and a requested number of factors. You can 

optionally enter a list of factor names, but it is actually easier to simply type them into 

the pattern editor. 

 

The QuickCFA function performs two steps: 

1. A quick factor pattern editor is opened. The user specifies the factor pattern with 

1’s indicating free parameters, and 0’s indicating fixed values of zero. Then this 

pattern is converted into a sem model specification and saved to disk. 

2. The model and data are analyzed automatically, using the sem command. 

Results are returned as a sem object. 

 

Each of these individual steps can be processed individually using more “fine-grained” 

service functions.  



> pureCFA.fit <- QuickCFA(AD.R,3,1000,”pureCFA”,c(“Hand-Eye”,”Endurance”,”Strength”)) 
 

A window will open allowing you to edit the pattern.  

 

 
 

Change the zeros into 1’s to match the hypothesized pattern. In this case, you should 

have 

 



 

Close the window, and the model will be analyzed, and the results of the analysis 

returned.  Requesting a summary of the fit produces the following: 
> summary(pureCFA.fit) 

 
Model Chisquare =  526.3   Df =  27 Pr(>Chisq) = 5.81e-94 
 AIC =  562.3 
 BIC =  339.8 
 
 Normalized Residuals 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 -7.530   0.000   0.823   1.710   2.880  14.000  
 
 R-square for Endogenous Variables 
  PINBALL  BILLIARD      GOLF   X.1500M   X.2KROW X.12MINTR     BENCH      CURL  MAXPUSHU  
   0.3541    0.5765    0.5533    0.5051    0.2855    0.5639    0.6097    0.5207    0.2345  
 
 Parameter Estimates 
                         Estimate Std Error z value Pr(>|z|)                            
lam[PINBALL:Hand-Eye]    0.5950   0.03355   17.736   2.204e-70 PINBALL - HandEye     
lam[BILLIARD:Hand-Eye]   0.7593   0.03470   21.885  3.644e-106 BILLIARD - HandEye    
lam[GOLF:Hand-Eye]       0.7438   0.03458   21.512  1.196e-102 GOLF - HandEye        
lam[X.1500M:Endurance]   0.7107   0.03740   19.005   1.550e-80 X.1500M - Endurance   
lam[X.2KROW:Endurance]   0.5344   0.03501   15.263   1.349e-52 X.2KROW - Endurance   
lam[X.12MINTR:Endurance] 0.7509   0.03801   19.757   7.017e-87 X.12MINTR - Endurance 
lam[BENCH:Strength]      0.7808   0.03954   19.750   8.018e-87 BENCH - Strength      
lam[CURL:Strength]       0.7216   0.03848   18.750   1.932e-78 CURL - Strength       
lam[MAXPUSHU:Strength]   0.4843   0.03489   13.881   8.261e-44 MAXPUSHU - Strength   
V[PINBALL]               0.6459   0.03553   18.178   7.719e-74 PINBALL > PINBALL     
V[BILLIARD]              0.4235   0.03863   10.962   5.806e-28 BILLIARD > BILLIARD   
V[GOLF]                  0.4467   0.03799   11.758   6.395e-32 GOLF > GOLF           
V[X.1500M]               0.4949   0.04247   11.651   2.257e-31 X.1500M > X.1500M     
V[X.2KROW]               0.7145   0.03797   18.816   5.556e-79 X.2KROW > X.2KROW     
V[X.12MINTR]             0.4361   0.04493    9.707   2.819e-22 X.12MINTR > X.12MINTR 
V[BENCH]                 0.3903   0.04919    7.935   2.111e-15 BENCH > BENCH         
V[CURL]                  0.4793   0.04475   10.712   8.916e-27 CURL > CURL           
V[MAXPUSHU]              0.7655   0.03855   19.857   9.556e-88 MAXPUSHU > MAXPUSHU   
 
 Iterations =  22 

Notice how the sem program gave the parameters long, involved names to try to 

describe their function. The QuickCFA function allows you to specify either correlated 

or orthogonal (uncorrelated) factors. In this case, we chose orthogonal factors, which is 

the default option. You may find the factor pattern itself easier to read and interpret in 

matrix form. You can take a quick look at it with the GetPattern function. This 

function extracts the factor pattern in matrix from from the sem fit object:  

 
> GetPattern(pureCFA.fit) 
$F 
            HandEye Endurance  Strength 
PINBALL   0.5950341 0.0000000 0.0000000 
BILLIARD  0.7593054 0.0000000 0.0000000 
GOLF      0.7438495 0.0000000 0.0000000 
X.1500M   0.0000000 0.7107084 0.0000000 
X.2KROW   0.0000000 0.5343523 0.0000000 
X.12MINTR 0.0000000 0.7509451 0.0000000 
BENCH     0.0000000 0.0000000 0.7808211 



CURL      0.0000000 0.0000000 0.7215662 
MAXPUSHU  0.0000000 0.0000000 0.4842856 
 
$Phi 
          HandEye Endurance Strength 
HandEye         1         0        0 
Endurance       0         1        0 
Strength        0         0        1 
 
 

This display can be cleaned up using the GetPrettyPattern function 
 
> GetPrettyPattern(pureCFA.fit) 
 
          HandEye Endurance Strength 
PINBALL   0.595                      
BILLIARD  0.759                      
GOLF      0.744                      
X.1500M           0.711              
X.2KROW           0.534              
X.12MINTR         0.751              
BENCH                       0.781    
CURL                        0.722    
MAXPUSHU                    0.484    
 
               HandEye Endurance Strength 
SS loadings      1.484     1.355    1.365 
Proportion Var   0.165     0.151    0.152 
Cumulative Var   0.165     0.315    0.467 
 
Factor Intercorrelations 
          HandEye Endurance Strength 
HandEye         1         0        0 
Endurance       0         1        0 
Strength        0         0        1 
 

The “pure” confirmatory factor model was rejected by the standard chi-square test. One 

can calculate an RMSEA confidence interval to guard against a situation in which 

power is high to reject even small departures from perfect fit. 
> RMSEA(pureCFA.fit) 
$Lower.Limit 
[1] 0.1260335 
 
$Point.Estimate 
[1] 0.1360501 
 
$Upper.Limit 
[1] 0.1463237 
 
$Confidence.Level 
[1] 0.9 

 

By most common criteria, this model doesn’t fit well enough to be considered adequate. 

 

In the face of such poor fit, many researchers resort to “modification indices” or other 

devices in order to update the model and obtain hints about where it might be 



inadequate.  Modification indices predict, using derivatives, how much the chi-square fit 

statistic will improve if a particular path is added. 

 

The sem module in R prints out modification indices. Some of them are illegal in a 

confirmatory model, and some involve freeing up error covariances in the model. The 

latter leads to correlated errors, which violates Spearman’s original intent that factors 

explain the correlations among the variables (in the partial correlation sense). 

 

A number of writers have warned about misuse of modification indices. There are a 

number of devices one might use to guard against improper reliance on these indices. 

 

I’ve created a function, CheckMod, to pick out the largest modification index that is 

“legal.” Unless you explicitly specify the option loadings.only = FALSE, you will 

be shown only modification indices corresponding to currently zero loadings. 
> CheckMod(pureCFA.fit) 
$NewPath 
[1] "Endurance->MAXPUSHU,AddedTheta19, NA" 
 
$ModIndex 
[1] 186.7415 

To update a sem fit object with the current modification index, use the UseMod 

function. 
> fit2 <- UseMod(pureCFA.fit) 
 

A quick check reveals that the fit is not yet what we would like: 
> RMSEA(fit2) 
$Lower.Limit 
[1] 0.09436259 
 
$Point.Estimate 
[1] 0.1046251 
 
$Upper.Limit 
[1] 0.1152201 
 
$Confidence.Level 
[1] 0.9 

We check the next modification index. It shows a potential change of 24 in the chi-

square, so we modify the model again. 
 
> CheckMod(fit2) 
$NewPath 
[1] "Strength->X.2KROW,AddedTheta20, NA" 
 
$ModIndex 
[1] 168.0183 
 



> fit3 <- UseMod(fit2) 
> RMSEA(fit3) 
$Lower.Limit 
[1] 0.05259059 
 
$Point.Estimate 
[1] 0.06337986 
 
$Upper.Limit 
[1] 0.07463124 
 
$Confidence.Level 
[1] 0.9> fit3 <- UseMod(fit2) 
 

Now we have better fit. 
 
> GetPrettyPattern(fit3) 
 
          HandEye Endurance Strength 
PINBALL   0.595                      
BILLIARD  0.759                      
GOLF      0.744                      
X.1500M           0.772              
X.2KROW           0.609     0.423    
X.12MINTR         0.692              
BENCH                       0.812    
CURL                        0.694    
MAXPUSHU          0.459     0.564    
 
               HandEye Endurance Strength 
SS loadings      1.484     1.657    1.639 
Proportion Var   0.165     0.184    0.182 
Cumulative Var   0.165     0.349    0.531 
 
Factor Intercorrelations 
------------------------ 
          HandEye Endurance Strength 
HandEye         1         0        0 
Endurance       0         1        0 
Strength        0         0        1 

 

2 . Confirmatory Factor Analysis from an Exploratory Pattern 
 

In this approach, one uses confirmatory factor modeling to “clean up” a pattern 

obtained by exploratory methods. The steps are 

1. An exploratory factor analysis is performed with the standard steps.  

2. After the number of factors is selected, the researcher chooses the best 

exploratory rotation, and uses that as the basis for constructing a confirmatory 

factor model. Essentially, any loading below a certain cutoff is fixed at 0, and all 

other loadings are left as free parameters. 

 

These steps can be performed in one step using the QuickEFAtoCFA function. 



> fit <- QuickEFAtoCFA(AD.R,3,1000) 

 
> GetPrettyPattern(fit) 
          Factor1 Factor2 Factor3 
X.1500M   0.794                   
X.2KROW   0.645   0.474           
X.12MINTR 0.674                   
BENCH             0.839           
CURL              0.677           
MAXPUSHU  0.506   0.603           
PINBALL                   0.602   
BILLIARD                  0.753   
GOLF                      0.745   
 
               Factor1 Factor2 Factor3 
SS loadings      1.758   1.751   1.484 
Proportion Var   0.195   0.195   0.165 
Cumulative Var   0.195   0.390   0.555 
 
Factor Intercorrelations 
------------------------ 
        Factor1 Factor2 Factor3 
Factor1   1.000  -0.273   0.015 
Factor2  -0.273   1.000   0.207 
Factor3   0.015   0.207   1.000 
 
 

Notice that the default is a correlated factor model. By using the cov.matrix=FALSE 

option, one may generate an orthogonal solution. 
> fit <- QuickEFAtoCFA(AD.R,3,1000, cov.matrix=FALSE) 
> GetPrettyPattern(fit) 
          Factor1 Factor2 Factor3 
X.1500M   0.772                   
X.2KROW   0.609   0.423           
X.12MINTR 0.692                   
BENCH             0.812           
CURL              0.694           
MAXPUSHU  0.459   0.564           
PINBALL                   0.595   
BILLIARD                  0.759   
GOLF                      0.744   
 
               Factor1 Factor2 Factor3 
SS loadings      1.657   1.639   1.484 
Proportion Var   0.184   0.182   0.165 
Cumulative Var   0.184   0.366   0.531 
 
Factor Intercorrelations 
------------------------ 
        Factor1 Factor2 Factor3 
Factor1       1       0       0 
Factor2       0       1       0 
Factor3       0       0       1 

 

3. Automating the “Confirm and Update” Approach 
 

In the introductory handout, Confirmatory Factor Analysis with R¸ we demonstrated 

how modification indices can be used to update a confirmatory factor model that does 



not fit well. In this section, we demonstrate how the process can be speeded up by using 

the results of a rotated exploratory factor analysis as the basis of a confirmatory model. 

 

We emphasize that this technique should be used with caution. It has some real 

advantages, one of which is that the parameter estimates from the exploratory solution 

are automatically used as starting values in the confirmatory analysis. 

 

Let’s take another look at the orthogonal solution generated in the previous section. 
> fit <- QuickEFAtoCFA(AD.R,3,1000, cov.matrix=FALSE) 
> CheckMod(fit) 
$NewPath 
[1] "Factor2->X.1500M,AddedTheta21, NA" 
 
$ModIndex 
[1] 41.91084 
 
> fit <- UseMod(fit) 
GetPrettyPattern(fit) 
 

With one pass from modIndices, we have achieved the same model as in the 

introductory handout, but in a fraction of the time.  Of course, with a simple R loop, 

you could automate the process. 

4. The “Exploratory-Confirmatory” Approach Revisited 
 

An alternative approach, which begins with a purely exploratory factor analysis, was 

described by Karl Jöreskog in his 1978 Presidential Address to the Psychometric 

Society. 

 

As described in the introductory hand out on confirmatory factor analysis, Jöreskog’s 

approach is as follows: 

 

• Perform an exploratory factor analysis, and decide on the number of factors, m. 

In many textbook examples, the decision is relatively clear cut. Be forewarned — 

in practice the decision may be quite difficult. 

• Fit an m-factor model, and rotate to simple structure using varimax or promax. 

(In the original article, Jöreskog said to use promax.)  



• For each column of the factor pattern, find the largest loading, then constrain all 

the other loadings in that row to be zero, and fit the resulting model as a 

confirmatory factor model. This confirmatory model will have exactly the same 

discrepancy function and 2  value as the exploratory factor analysis that 

preceded it. 

• Examine the factor pattern, and test all factor loadings. Delete “non-significant” 

loadings from the model. After checking the fit, the user can decide whether to 

terminate the process, or look for more loadings to delete.  

 

In our introductory handout, we explained how the various steps are performed, and 

illustrated them using the AthleticsData. We demonstrated that the first 3 steps use 

confirmatory factor analysis to find a specific rotational position, but that this 

rotational position can actually be calculated directly. Once this position has been 

attained in a confirmatory factor analysis, the resulting pattern is “toned up” by 

eliminating non-significant loadings.  

 

The function QuickJoreskog does all this automatically. 

 
> R <- as.matrix(Harman74.cor$cov) 
> fit <- QuickJoreskog(R,4,145) 

 

This analysis could take several hours to complete using the sem package. The many 

steps requiring careful scanning of output result in quite a few errors. Compare the 

pattern on the next page to the final one in Jöreskog (1978).  His has a chi-square of 

301 with 231 degrees of freedom, while the model derived automatically has values of 

294 and 230. By using the service function FAtoREF, you can generate the 

intermediate “reference solution” and see that he made a couple of errors deleting and 

including paths. This is very easy to do when performing these operations by hand. 

 

This solution can be “improved” by using CheckMod and UseMod and adding a few 

paths.  

  



 
> GetPrettyPattern(fit) 
                       Factor1 Factor2 Factor3 Factor4 
GeneralInformation      0.746           0.146          
PargraphComprehension   0.829                          
SentenceCompletion      0.889           0.141  -0.196  
WordClassification      0.511   0.213   0.148          
WordMeaning             0.860                          
VisualPerception                0.735                  
PaperFormBoard                  0.546                  
Flags                           0.587                  
SeriesCompletion        0.265   0.540                  
Addition                                0.848          
CountingDots           -0.211   0.327   0.671          
WordRecognition                                 0.549  
NumberRecognition                               0.531  
ObjectNumber                                    0.642  
Cubes                           0.467                  
Code                                    0.423   0.393  
StraightCurvedCapitals          0.448   0.428          
FigureRecognition               0.322           0.386  
NumberFigure                    0.184           0.499  
FigureWord                                      0.490  
Deduction               0.321   0.413                  
NumericalPuzzles                0.460   0.361          
ProblemReasoning        0.319   0.399                  
ArithmeticProblems      0.371           0.493          
 
               Factor1 Factor2 Factor3 Factor4 
SS loadings      3.493   2.725   1.970   1.828 
Proportion Var   0.146   0.114   0.082   0.076 
Cumulative Var   0.146   0.259   0.341   0.417 
 
Factor Intercorrelations 
------------------------ 
        Factor1 Factor2 Factor3 Factor4 
Factor1   1.000   0.530   0.281   0.509 
Factor2   0.530   1.000   0.247   0.523 
Factor3   0.281   0.247   1.000   0.445 
Factor4   0.509   0.523   0.445   1.000 
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